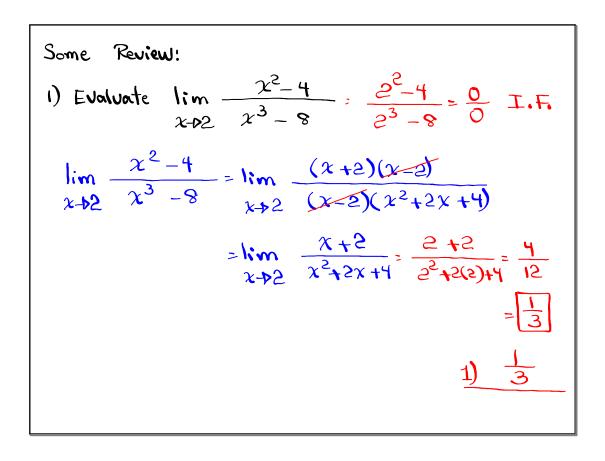


Feb 19-8:47 AM



2) for
$$\epsilon > 0$$
, find $\epsilon > 0$ such that $\lim_{x \to 3} (2x - 5) = \frac{1}{x}$
 $f(x) = 2x - 5$ Verify the limit

 f

Sind the equation of the tangent line to the graph of
$$S(x) = \frac{2}{\sqrt{x}}$$
 at $x = 4$.

$$(4, S(4)) = (4, 1)$$

$$m = \frac{1}{3x} \left[S(x)\right]_{(4,1)} = (4, 1)$$

$$S(x) = \frac{2}{\sqrt{x}} \quad S(x) = \frac{2}{x^{1/2}} \quad S(x) = 2x$$

$$S'(x) = 2 \cdot \frac{1}{2} x^{3/2} = \frac{-1}{x\sqrt{x}} \quad S'(x) = \frac{1}{2} (x - 4)$$

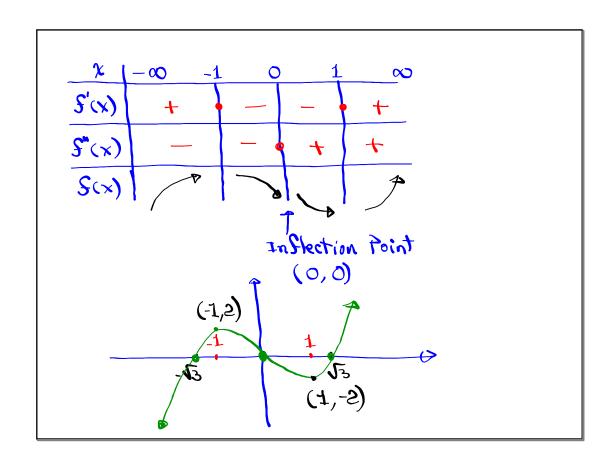
$$m = S'(4) = \frac{-1}{4\sqrt{4}} = \frac{-1}{8}$$

(traph
$$y = x^3 - 3x$$

1) Polynomial \rightarrow Domain $(-\infty, \infty)$

2) $y - 1$ nt $(0, 0)$
 $0 = x^3 - 3x$
 $= x(x^2 - 3)$
3) $x - 1$ nt $(0, 0)$
 $(\pm 13, 0)$
 $x = 0, x = \pm 13$

4) $f(x) = x^3 - 3x$
 $f(-x) = (-x)^3 - 3(-x) = -x^3 + 3x = -[x^3 - 3x] = -f(x)$
what do we conclude when $f(-x) = f(x)$
 $f(x) = 3x^2 - 3$
 $f(x) = 3x^2 - 3$
 $f'(x) = 0$
 $f'(x)$



find area below
$$S(x) = 4 - x^2$$
, above $x-axis$.

Drawing required.

$$A = 2 \int_{0}^{2} (4 - \chi^{2}) d\chi$$

$$= 2 \left[4\chi - \frac{\chi^{3}}{3} \right]_{0}^{2}$$

$$= 2 \left[\left(4(2) - \frac{2^3}{3} \right) - \left(0 \right) \right] =$$

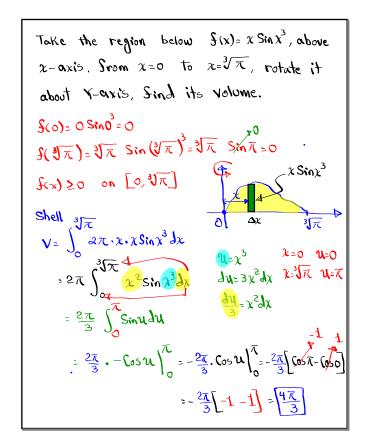
Consider the region bounded by
$$y = \frac{1}{x^3}$$
, $x = 1$, $x = 2$, and $y = 0$. Sind the volume if it is rotated about 1)x-axis

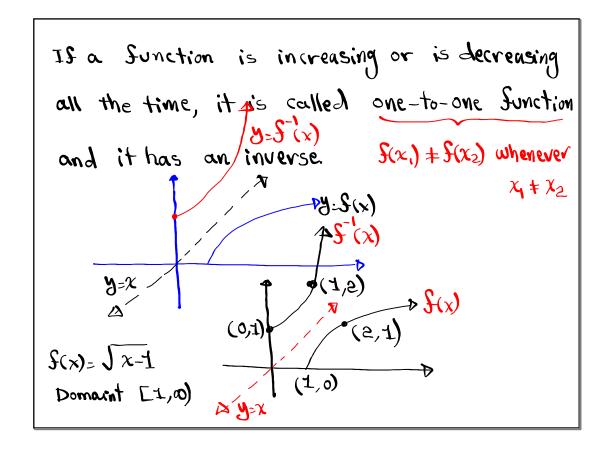
Disk $V = \int_{1}^{2} \frac{1}{x^3} dx$

2) $Y = axis$.

shell

 $V = \int_{1}^{2} 2\pi \cdot x \cdot \frac{1}{x^3} dx$
 $= \frac{-\pi}{5} \left[\frac{1}{32} - 1 \right] = \frac{-2\pi}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = -2\pi \cdot \frac{1}{2}$
 $= -2\pi \cdot \frac{1}{2}$





How to Sind $S^{-1}(x)$:

1) Replace S(x) with Y.

2) Switch $x \notin Y$.

3) Solve for Y. $S^{-1}(x) = x^2 + 1$ 4) Replace Y with $S^{-1}(x)$. $S(x) = \sqrt{x} + 1$ $S(x) = \sqrt{x} + 1$

Sind
$$\frac{d}{dx} \left[f(x) \right] = \frac{d}{dx} \left[\sqrt{x-1} \right] = \frac{d}{dx} \left[(x-1)^{2} \right]$$

$$= \frac{1}{2} (x-1)^{2} \cdot 1 = \frac{1}{2\sqrt{x+1}}$$

$$\text{Sind } \frac{d}{dx} \left[f'(x) \right] = \frac{d}{dx} \left[x^{2} + 1 \right] = 2x$$

If
$$(f \circ g)(x) = x$$
 and $(g \circ f)(x) = x$, then

 $f(x)$ and $g(x)$ are inverse of

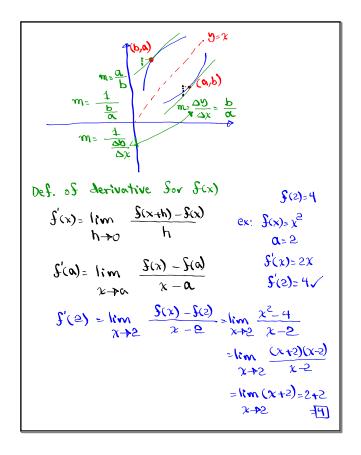
Composition each other.

$$f(x) = 3x + 5 \quad \stackrel{?}{=} g(x) = \frac{x-5}{3}$$

$$(f \circ g)(x) = f(g(x)) = 3g(x) + 5 = g(\frac{x-5}{3}) + 5 = x$$

$$(g \circ f)(x) = g(f(x)) = \frac{f(x)-5}{3} = \frac{3x+5-5}{3} = x$$

$$f(x) \stackrel{?}{=} g(x) \text{ are inverse of each other.}$$



Given
$$f(x) = \chi^3$$
, $\alpha = 8$
Sind $(f^{-1})'(\alpha)$ $f^{-1}(x) = \sqrt[3]{x} = \chi^{1/3}$
 $(f^{-1})'(\alpha) = \frac{1}{f'(f'(\alpha))}$ $\frac{1}{3\sqrt[3]{x^2}}$ $\frac{1}{3\sqrt[3]{x^2}}$ $\frac{1}{3\sqrt[3]{x^2}}$ $\frac{1}{3\sqrt[3]{x^2}}$ $\frac{1}{3\sqrt[3]{x^2}}$ $\frac{1}{12}$

Given
$$S(x) = \frac{1}{x-1}$$
, $x > 1$, $S(x) = \frac{-1}{(x-1)^2}$
 $(S^{-1})'(2)$ $= (x-1)^{-1}$ $S(x) = \frac{1}{x-1}$
we learned $S(x) = \frac{1}{x-1}$ $S(x) = \frac{1}{x-1}$
 $S(x) = \frac{1}{x-1}$ $S(x) = \frac{1}{x-1}$ $S(x) = 1$ $S(x) = 1$

$$f(x) = x^{3} + 3 \sin x + 2 \cos x$$

$$(f^{-1})'(2) \qquad f'(x) = 3x^{2} + 3 \cos x - 2 \sin x$$
We learned
$$f(3) = 2$$

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} \qquad f(0) = 2$$

$$= \frac{1}{3(0)^{2} + 3(0)^{2}} = \frac{1}{3}$$
Recap:
$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

working with exponential Sunctions:

$$J(x) = e^{x}$$

$$J(x) = \lim_{h \to 0} \frac{J(x+h) - J(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

$$= \lim_{h \to 0} \frac{e^{x} e^{h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x}(e^{h} - 1)}{h}$$

$$= e^{x} \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

$$= e^{x} \cdot 1 = e^{x}$$

$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

$$f(x) = x + e^{x}$$

$$f(0) = 0 + e^{0} = 1$$

$$f'(x) = 1 + e^{x}$$

$$f'(0) = 1 + e^{0} = 2$$

Draw
$$f(x)=e^{x}$$

shade the region below $f(x)$, above x -axis,

between $x=1$ and $x=2$.

$$A = \int_{1}^{2} e^{x} dx = e^{x} \left| \frac{1}{1} \right| dx$$

$$= e^{2} - e^{1}$$

$$= e^{2} - e^{1}$$

